
Build an algorithm
- or -
Post a project like this€157(approx. $185)
- Posted:
- Proposals: 4
- Remote
- #2865049
- Expired
Description
Experience Level: Entry
Basically I’m looking to;
• upload BTC timeseries data (.csv) – this can be by the minute or it can be daily or indeed weekly
• perform some analysis
• date time feature – possibly convert into ‘year’ ‘month’ ‘day’
• transform data to eliminate trends (if they exist)
• EDA
• create/use base model & determine RMSE
• create a lag feature
• visualise the data
o lag scatter plots
o autocorrelation plots etc
• moving average (& as prediction or for comparison)
• check for stationarity
• evaluate models (backtesting)
• reframe timeseries (create lagged dataset & classification function to predict output) ie;
# Create lagged dataset
values = pd.DataFrame(s.values)
df = pd.concat([values.shift(1), values], axis=1)
df.columns = ['t', 't+1']
def make_discrete(row):
if row['t+1'] 3:
return 'high'
else:
return 'medium'
# apply the above function to reassign t+1 values
df['t+1'] = df.apply(lambda row: make_discrete(row), axis=1)
• improve RMSE using new fine tuned models
• compare autoregression/Arima/etc models
• grid search model hyperparameters
• evaluate forecasts
• compare and display models
• upload BTC timeseries data (.csv) – this can be by the minute or it can be daily or indeed weekly
• perform some analysis
• date time feature – possibly convert into ‘year’ ‘month’ ‘day’
• transform data to eliminate trends (if they exist)
• EDA
• create/use base model & determine RMSE
• create a lag feature
• visualise the data
o lag scatter plots
o autocorrelation plots etc
• moving average (& as prediction or for comparison)
• check for stationarity
• evaluate models (backtesting)
• reframe timeseries (create lagged dataset & classification function to predict output) ie;
# Create lagged dataset
values = pd.DataFrame(s.values)
df = pd.concat([values.shift(1), values], axis=1)
df.columns = ['t', 't+1']
def make_discrete(row):
if row['t+1'] 3:
return 'high'
else:
return 'medium'
# apply the above function to reassign t+1 values
df['t+1'] = df.apply(lambda row: make_discrete(row), axis=1)
• improve RMSE using new fine tuned models
• compare autoregression/Arima/etc models
• grid search model hyperparameters
• evaluate forecasts
• compare and display models

Collin W.
100% (1)Projects Completed
1
Freelancers worked with
1
Projects awarded
0%
Last project
7 Jul 2020
Ireland
New Proposal
Login to your account and send a proposal now to get this project.
Log inClarification Board Ask a Question
-
There are no clarification messages.
We collect cookies to enable the proper functioning and security of our website, and to enhance your experience. By clicking on 'Accept All Cookies', you consent to the use of these cookies. You can change your 'Cookies Settings' at any time. For more information, please read ourCookie Policy
Cookie Settings
Accept All Cookies